Best Viewed in Mozilla Firefox, Google Chrome


Limitations of Biofertilizer application

 Use of biofertilizers makes certain constraints generally related to production, market, resource and field level which are as follows.

(1) Production constraints:
  • Unavailability of appropriate and efficient strains
  • Unavailability of suitable carrier
  • Lack of standards in packaging
(2) Market level constraints:
  • La

Application methods for Cyanobacteria and Azolla

  • Broadcast 10 kg soil based culture/ha.  5-7 days after transplanting of rice seedlings
  • Maintain sufficient water (5 –10 cm) for 15 days 
  • A thick algal mat is formed at 15 days
  • Drain off water and allow algal mat to settle 
  • Incorporate as green manure before tr

Application methods for Azospirillum & Phosphate solubilizer

(i) Seed treatment for direct seeded rice
  • Keep the seeds required for sowing one acre in a heap on a clean cemented floor or gunny bag.
  • Prepare culture suspension by mixing one packet {200g}  each of Azospirillum  and PSB biofertilizer in approx. 800 ml water {1:2}
  • Sprinkle the culture suspension on the heap of the seeds and mix by hand so that thin coating is uniformly applied to the seeds.
  • Spread the seeds under s

Use of biofertilizer in rice

  •  There is a need to balanced supply of nutrients to the crops in an integrated fashion without over reliance on only one source of nutrients for sustainable production.
  • In this direction, bio-fertilizer has emerged as a promising component in integrated nutrient supply system for sustaining the crop production. 
  • Cyanobacterial nitrogen fixation helps to minimize the over dependence of chemicals, in particular, urea in rice farming and also enhan


  •  The symbiotic association between plant roots and fungal mycelia is termed as Vesicular Arbuscular Mycorrhizae (VAM). 
  • VAM is a fungal biofertilizer mobilizes relatively immobile elements like Zn, Cu, K, S, Al, Mn, Mg, Fe, and speed up their uptake by plants. 
  • VAM inoculation improves the water relation to plants. 
  • Many of the graminaceous and leguminous plants harbour VAM (Gherbi et al., 2008). 
  • These plants cont

Phosphate solubilizing microorganisms

  •  Phosphorus is the second important nutrient after nitrogen for plants and microorganisms. 
  • Further, there is build up of insoluble phosphates in soil where phosphatic fertilizers have been applied over long periods.  
  • Some heterotrophic bacteria and fungi are known to have the ability to solubilize inorganic P from insoluble sources. 
  • Important phosphate solubilizing organisms are Pseudomonas striata, Bacillus polymyxa, Asperg


  •  Azolla is a free-floating fresh water fern (Azolla pinnata). 
  • Azolla is applied to the main field as a green manure and dual crop. 
  • As green manure crop it is allowed to grow on the flooded fields for 2-3 weeks before transplanting later water is drained and ploughing for mixing with the soil. 
  • Azolla is applied to the soil one week after transplanting when a thick mat forms, trampling to incorporate which supplies 30-40 kg N/

Blue green algae

  • Heterocysts are specialized cell in algal filaments, which act as seats of nitrogen fixation. 
  • The most important species are Anabaena and Nostoc. 
  • The amount of nitrogen fixed by blue green algae is range from 15-45 kg N /ha (Costa et al., 2002). 
  • Standing water of 2-10 cm in the field is a prerequisite for the growth of blue green algae. 
  • It can grow in a temperature range of 20-35oC. 
  • Bright sunshine increases the g


  • An associative micro aerophillic nitrogen fixer commonly found in loose association with the roots of cereals is of great interest. 
  • High nitrogen fixation capacity, low energy requirement and abundant establishment in the root of cereals. 
  • Sterilized FYM + soil are used as carriers. 
  • The carrier inoculants are made into slurry and mixed uniformly with seeds, dried in shade and sown. 
  • Azospirillum inoculum is used for sorghum. 


  • A dominant non-symbiotic free living heterotrophic nitrogen fixing bacteria encountered in neutral to alkaline soil not only provides the nitrogen but produce a variety of growth promoting substances. 
  • Some of these growth-promoting substances are indole acetic acid, gibberellins, B vitamins and antifungal antibiotics substances. 
  • Azotobacter chroococcum is dominant in arable soils and capable of fixing N2 10-15 kg N/ha (Johanna, 1997). 
Copy rights | Disclaimer | RKMP Policies