Best Viewed in Mozilla Firefox, Google Chrome

Breeding Strategies For Development of Climate Resilient Varieties In Rice

PrintPrintSend to friendSend to friend
Climate change has been a hot topic nowadays and its impact on agriculture and related fields makes the scientific community to work towards innovating new technologies which proves resilient during fluctuations in climate. In a report by IPCC (2001) which states that in the past century the temperature have increased by more than 0.6oC. It is very surprising to know that most of the warming has occurred since the 1970s and also the warmest years has occurred in the past decade. Further, looking at the last 1000 years, the most warmest years have occurred in the last 60 years and this has caused rise in the occurrence of floods and drought (Wassmann and Dobermann, 2007). 
As a C3 plant the rise in Co2 concentration will have beneficial effect on rice plant but the overall effect in the tropical areas will be negative. Erratic rainfall and extreme weather events will increase frequencies of both drought and floods. Higher temperature affect the rice crop particularly during the pollination stage which results in more sterile grains and thus less yield. Increase in sea level will cause inundation of more coastal areas and increase in salinity problem of the coastal areas. Change in climate will have effect on insect pest and diseases. Some of the pathogen and insect pest may proliferate and cause epidemics in rice. Drought and floods will cause change in water use efficiency and nutrient use efficiency of the crop and also the nutrient uptake of the rice due to change in the soil microclimate. Rice crop suffers from a number of stresses which hamper the rice production directly or indirectly. Stresses like drought, cold, heat, disease/insect and flooding affects the rice crop economically. It is estimated that the frequency of these stress environment will increase in the near future.
Plant breeding technologies often combine traditional knowledge with cutting edge biotechnological techniques are already making real impact in meting the challenge of climate change. Apart from crop management strategies for climate change Plant Breeding plays a major role in combating this change by evolving such genotypes which can withstand in stress environments. Breeding climate resilient varieties is a comprehensive approach for mitigating the effects of climate change on rice.

The integration of conventional breeding techniques with modern biotechnological approaches which covers the genomics, proteomics and phenomics aspects of the crops makes the breeding process more efficient and evolving the new rice varieties in much shorter time. Genetic resources are a store house for alleles that provide resilience to the crop under various stresses. The traditional cultivars are valuable germplasm which can be used in breeding programmes.  MAS for climate resilient traits in rice have proved to be effective in varietal development. QTL mapping for genes conferring resistance to various stresses in rice is quite effective methodology for mapping genes and its introgression in elite varieties. Here we discuss various stresses in rice due to climate change and the breeding strategies for mitigating the stress and development of varieties which will be the future weapon to cope with climate change.

File Courtesy: 
Chandan Kapoor, H. Kalita, R. Gopi, A.K. Mohanty and Pradeep Chettri ICAR Research Complex for NEH Region, Sikkim Centre, Tadong Gangtok, TRAINING MANUAL ON RICE KNOWLEDGE MANAGEMENT FOR FOOD AND NUTRITIONAL SECURITY, ICAR-NEH (Nov,28th –Dec, 04th 2013)
Copy rights | Disclaimer | RKMP Policies